ALICE.AI: a inteligência que soluciona desafios críticos e aumenta a retenção de clientes.

David Gomes, gerente de produtos da Scala,
explica como a ferramenta pode auxiliar até na redução de churn.

Ser competitivo, reduzir o churn (taxa de cancelamento de clientes) e manter os clientes satisfeitos. Você, gestor, que está lendo este texto, sabe que alcançar essas metas não é nada fácil, não é mesmo? E se falassem para você que existe uma IA capaz de te ajudar com todos esses desafios? Ela se chama ALICE.AI, e é um dos produtos  da Scala. 

Para te contar como ela funciona de forma tão revolucionária, convidamos David Gomes, gerente de produtos da Scala, para uma entrevista. Ele não só explicou sobre o tema, como também trouxe, de forma muito prática, como a ALICE.AI auxilia empresas como a sua. Confira!

ALICE.AI – A Revolução na Retenção de Clientes

Com o crescimento acelerado do mercado de tecnologia e a explosão de dados disponíveis, as empresas precisam de soluções que as ajudem a transformar essas informações em estratégias eficazes. Nesse contexto, a ALICE.AI surge como um produto  inovador que utiliza machine learning, análises preditivas e prescritivas, e uma abordagem data driven para criar soluções personalizadas para cada empresa.

Dentre os diversos benefícios da ALICE.AI, destaca-se a redução do churn. Afinal, manter uma base sólida de clientes, sem dúvida, é um dos fatores mais críticos para o sucesso de qualquer negócio. Mas como exatamente a ALICE.AI  atinge esse objetivo? Vamos descobrir com David Gomes, gerente de produtos da Scala Stefanini.

Antes da Entrevista É Importante Você Entender Uma Questão: O Problema do Churn e Seu Impacto nos Negócios

Para compreendermos o real valor da ALICE.AI, é essencial entender o que é churn e seus impactos nos negócios. Em termos simples, o churn, ou taxa de cancelamento de clientes, é um indicador que mede a quantidade de clientes que abandonam uma empresa em um determinado período.  Essa perda pode ocorrer por diversos fatores, como insatisfação com o serviço, migração para a concorrência por ofertas mais vantajosas ou até mesmo por falta de engajamento.

As consequências de um alto índice de churn são sérias: as empresas enfrentam perda significativa de receita e precisam arcar com um custo ainda maior para adquirir novos clientes. Na prática, esses gastos com a aquisição podem superar o investimento em manter os clientes existentes, o que gera prejuízos e impede o crescimento a longo prazo.

Agora sim, confira a entrevista com David Gomes:

  • Como a ALICE.AI atua na redução do churn?

David Gomes: A ALICE.AI se destaca por ser extremamente adaptável e orientada a resultados. O grande diferencial está na forma como a inteligência artificial e as análises preditivas e prescritivas são integradas às estratégias de negócio de nossos clientes. Em outras palavras, a ALICE.AI consegue analisar grandes volumes de dados de múltiplas fontes — como CRM, call centers, ERPs e outras — com o objetivo de identificar padrões de comportamento que possam indicar a propensão ao churn. A partir dessa análise detalhada, a plataforma recomenda ações concretas para mitigar esses riscos antes mesmo que os clientes decidam cancelar os serviços.

  • Pode nos contar um exemplo prático de como a ALICE.AI ajudou uma empresa a reduzir seu churn?

David Gomes: Com certeza! Um dos nossos casos de sucesso envolve uma operadora de telecomunicações que estava enfrentando um churn elevado entre seus clientes de banda larga. Para solucionar o problema, a ALICE.AI foi implementada com o objetivo de analisar dados de comportamento de uso, interações com o serviço de atendimento e feedbacks coletados de pesquisas de satisfação. A partir dessa análise, descobrimos que muitos dos clientes que cancelavam tinham problemas recorrentes de conexão que não estavam sendo resolvidos no primeiro contato. Diante dessa conclusão, a ferramenta sugeriu a implementação de ações corretivas automatizadas que antecipavam esses problemas e ofereciam soluções proativas. Essa estratégia resultou em uma redução significativa no churn, além de melhorar a satisfação geral dos clientes.

  • Quais são os diferenciais e vantagens competitivas da Alice.AI em comparação com outras ferramentas de IA do mercado?

David Gomes: Em primeiro lugar, destaca-se por sua flexibilidade e capacidade de se integrar a qualquer sistema de dados. Diferentemente de outras soluções, não estamos limitados a uma tecnologia ou banco de dados específico, o que significa que conseguimos adaptar a solução ao cenário tecnológico de cada cliente. Além disso, ela não apenas prevê possíveis comportamentos, mas também prescreve as melhores ações a serem tomadas, indo além do que a maioria das ferramentas de IA no mercado oferecem. Para resumir, a ALICE.AI ajuda as empresas não só a identificar potenciais problemas, mas a agir diretamente sobre eles.

  1. Como a ALICE.AI pode prever comportamentos de clientes com base em dados?

David Gomes: A ALICE.AI se baseia em modelos analíticos complexos, que utilizam machine learning para analisar dados históricos e identificar padrões. Esses padrões, por sua vez, são utilizados para construir previsões sobre comportamentos futuros dos clientes. Para ilustrar, podemos analisar o histórico de interações de um cliente com a empresa, seu perfil de consumo e seu grau de satisfação, e, com base nesses dados, prever quando ele está em risco de cancelar o serviço. A partir dessa análise preditiva, nosso produto sugere ações que podem reverter esse processo, como oferecer um desconto personalizado ou melhorar a experiência de suporte ao cliente.

  • Quais são os principais benefícios para os negócios que utilizam ALICE.AI na gestão do churn?

David Gomes: A principal vantagem da plataforma é permitir que as empresas sejam mais proativas e menos reativas em relação ao churn. Ao antecipar potenciais cancelamentos e recomendar ações estratégicas, as empresas podem melhorar significativamente sua taxa de retenção de clientes. Consequentemente, essa abordagem resulta em maior receita e menor custo de aquisição. Além disso, a ALICE.AI também ajuda a identificar os clientes mais valiosos para o negócio, permitindo que as empresas concentrem seus esforços nas empresas certas, o que otimiza recursos e maximiza o ROI.

  • Como você vê o futuro da ALICE.AI e da IA no mundo dos negócios?

David Gomes: O futuro da ALICE.AI é bastante promissor. Estamos continuamente aprimorando nossos modelos de machine learning e expandindo nossas capacidades para diferentes segmentos de mercado. Acredito que, a longo prazo, a ALICE.AI não será apenas uma ferramenta para reduzir churn, mas sim uma plataforma completa de gestão de experiência do cliente. Para isso, estamos trabalhando para oferecer insights em tempo real e agir automaticamente para melhorar o engajamento e a lealdade dos clientes. Por outro lado, traçando um panorama geral, a tendência é que IA esteja cada vez mais integrada ao dia a dia das empresas, com soluções que não apenas suportem, mas automatizem decisões de negócios de maneira ainda mais eficaz.

Curtiu a entrevista?  Então, Dê o Próximo Passo com a ALICE.AI

Como vimos nessa entrevista com o gerente de produtos da Scala, David Gomes: A ALICE.AI já está transformando empresas de diferentes setores, ajudando-as a enfrentar seus maiores desafios de negócio. Se a retenção de clientes é uma prioridade para sua empresa, essa é a hora de agir!

Com a ALICE.AI, você investe em uma solução que vai além da análise de dados e realmente aplica inteligência artificial de forma estratégica para reduzir o churn e impulsionar o crescimento do seu negócio.

Pronto para alcançar resultados exponenciais?

Entre em contato com a equipe da Scala e descubra como podemos transformar seus desafios em oportunidades de crescimento.


Como Identificar e Combater as Deepfakes

Saiba quais são as medidas para lidar com riscos e evitar cair em golpes de deepfakes, que
representam 27% dos casos de uso criminoso de IA.

Verificar a fonte da informação é a maior recomendação para lidar com deepfakes. Conteúdos gerados por IA evoluem na velocidade da tecnologia e ainda estamos aprendendo sobre como são criados e disseminados. O realismo atrelado ao seu mau uso pode gerar sérias consequências e danos irreversíveis e, por isso, pessoas e companhias buscam medidas para se protegerem e minimizarem os danos do compartilhamento de imagens falsas.

Para identificar o uso criminoso da inteligência artificial, algumas recomendações são fundamentais para entender e compreender como pessoas ou grupos usam este recurso para praticar fraudes dos mais variados tipos. Como saber se uma notícia é falsa, ou um perfil é falso, ou uma voz é falsa? O importante é checar quem é o dono da informação e sempre consultar a fonte. Assim como as fake news, também bastante presente nesta era digital, as deepfaakes são uma ameaça em todo mundo, com números que crescem exponencialmente. De acordo com estudo inédito da DeepMind, unidade de IA do Google, deepfakes representam 27% dos casos de uso criminoso de IA, superando ataques cibernéticos.

Neste contexto, vale um olhar atento ao conteúdo produzido por meio de inteligência artificial, tecnologia que se expandiu de forma expressiva nos últimos anos. Com o uso da IA, tudo ficou fácil e rápido. A IA faz uma engenharia social e pode ser utilizada para adulterar fotos e vídeos postados nas redes sociais. Portanto, a partir do momento que há uma fonte de informação de domínio público de uma determinada pessoa, é possível manipular esse material.

Para lidar com os riscos e saber a real autenticidade destes conteúdos, alguns cuidados são essenciais, tanto com imagem quanto voz. Uma sugestão é, na hora de tirar uma foto, evite clicá-la de frente e tire de lado. Em relação à recriação de vozes, muito cuidado na forma de falar e usar sempre uma linguagem mais formal, não tão coloquial, pois contribui para minimizar esse problema.

Aplicativo de mensagens é um dos canais favoritos para a tentativa de fraude. É possível se proteger com algumas recomendações dessa prática, que se tornou comum nos últimos anos. O pedido de dinheiro por um áudio ou uma voz gravada, por exemplo, vai ser de um celular que não está registrado na agenda de contatos. Uma dica é orientar familiares a ligarem para terem certeza de que aquilo é um ato criminoso.

Outra coisa importante é como essas tecnologias podem avançar com segurança. Hoje, da mesma forma que temos a IA para criar as deepfakes, temos IA para verificar se aquele material foi criado por inteligência artificial e, eventualmente, manipulado, recriado ou usado indevidamente. Conseguimos checar tecnologia versus tecnologia, IA versus IA, para fazer essa verificação e avaliar sua veracidade. São infindáveis possibilidades e a regulação e o uso ético são mobilizações que já vemos acontecer em alguns lugares do mundo. O fato é que a tecnologia foi criada para facilitar e agilizar, e não para desenvolver uma deepfake.

É um tema muito novo, tudo é muito incipiente e estamos todos aprendendo. Por mais que sejam muitos os esforços das plataformas de redes sociais alertar ou remover esse tipo de conteúdo, distinguir o que é verdadeiro e o que é falso ainda é um desafio. É uma tecnologia que muda numa velocidade muito grande; usá-la de forma consciente pode minimizar os riscos que sua má utilização é capaz de proporcionar.

Da mesma forma que a IA veio para facilitar o dia a dia das pessoas e corporações, gerar mais eficiência e produtividade, a tecnologia pode ser utilizada de maneira indevida, impulsionado a sofisticação dos golpes e a geração de conteúdo sem consentimento. O cenário é desafiador e, certamente, teremos de nos adaptar a esse novo momento da tecnologia para que a IA não se torne inimiga da própria IA.


As 7 principais aplicações de inteligência artificial nas empresas!

No mundo corporativo, as empresas recebem dados e informações a todo momento. Sejam de fornecedores, sejam de clientes, eles ficam disponíveis para análise. Saber extrair o que tem de mais valioso neles é um diferencial. Ferramentas que têm como base a inteligência artificial conseguem compilar dados de uma maneira bem mais eficiente do que uma pessoa faria.

Inteligência artificial é uma tecnologia com capacidade de realizar atividades no lugar dos seres humanos. São softwares e máquinas desenvolvidos para ter comportamento inteligente, ou seja, seu pensamento se aproxima do pensamento de um ser humano em razão de uma capacidade que faz parte do conceito de inteligência: o aprendizado.

Diferentemente de um software convencional, soluções que exploram a inteligência artificial conseguem “aprender” a melhorar o próprio serviço a que se destinam. Hoje em dia, é possível observar a implementação desses softwares em celulares, casas, carros, empresas etc.

Especificamente nas empresas, a inteligência artificial é utilizada como forma de potencializar os resultados, aumentar a produtividade e economizar tempo. Ela pode ser implementada em diversos setores para melhorar o desempenho de tarefas e ajudar os profissionais de gestão a mapear processos.

Pensando nisso, neste post, trazemos as 7 principais aplicações de inteligência artificial nas empresas. Acompanhe a leitura e confira!

1. Chatbots

Os chatbots utilizam a linguagem para conversar com as pessoas de maneira natural e pré-programada. Reconhecem nomes e números de telefones e reproduzem o comportamento humano.

Eles podem ser integrados a outras ferramentas e bancos de dados, automatizando rotinas simples de cadastro, atualização e consulta de informações. Essas integrações deixam os serviços mais rápidos, melhorando a experiência do cliente.

A CNH Industrial, uma empresa líder global de bens de capital, é um exemplo de empresa que investiu em uma solução de inteligência artificial com chatbots. A plataforma é responsável por atendimentos considerados simples. Houve redução de 10% no volume de ligações para o help desk e de 80% no tempo de resposta de abertura de chamados.

2. Aplicações de gestão

As aplicações de inteligência artificial para gestão são mais utilizadas em corporações. Elas são úteis para identificar quais colaboradores estão desempenhando as tarefas com mais eficiência.

Contar com esse tipo de ferramenta auxilia a tomada de decisão de gestores, pois eles têm informações precisas e confiáveis sobre os processos da empresa à sua disposição. Quando os dados são relevantes, fica mais fácil analisar quais ações estão dando certo e quais não.

3. Assistente pessoal

Utilizada para marcar reuniões, horários na agenda e atividades do cotidiano, a inteligência artificial como assistente pessoal vai muito além. Uma das mais conhecidas é a Siri, presente nos produtos da Apple. Ela reconhece comando de voz e é utilizada como um facilitador para diferentes funções cotidianas.

Em razão do aprendizado da máquina de inteligência artificial, esse tipo de software costuma ser constantemente atualizado. Com os dados de preferência, ele antecipa as solicitações com base na tendência de comportamento de cada pessoa, ou seja, a experiência do usuário tende sempre a melhorar.

Nas empresas, o assistente virtual pode ajudar a direcionar o usuário para o serviço que melhor se encaixa na sua necessidade, agilizando os processos para funcionários e prestadores de serviços. Um exemplo aplicado em empresas é a Aixa, assistente virtual da Caixa Econômica Federal, que ajudou o banco a se tornar referência em atendimento virtual no Brasil.

4. Mecanismos de segurança

A inteligência artificial também pode ser desenvolvida como mecanismo de segurança tanto em ataques digitais quanto em situações do cotidiano, como eventos.

Na parte digital, o exemplo mais comum é o internet banking. Um serviço de inteligência artificial vinculado aos servidores que hospedam os serviços que compõem o site pode identificar tentativas de ataques com mais rapidez que um humano. Ele também consegue analisar novas modalidades de ataques que foram bem-sucedidos e criar formas de neutralização para evitar novas ocorrências.

Já no mundo físico, podemos utilizar como exemplo a interpretação de câmeras de trânsito, a fim de ajudar as entidades que gerenciam o tráfego a tomar decisões que melhorem o fluxo de veículos nas vias. Serviços de reconhecimento facial também usam inteligência artificial, então também podemos dizer que a IA é capaz de auxiliar no rastreamento de criminosos com a análise de imagens de câmeras de segurança.

5. Predições

As máquinas equipadas com inteligência artificial nas empresas podem ser desenvolvidas para fazer previsões do comportamento humano em determinadas circunstâncias. Essa tecnologia pode ser utilizada em campanhas de marketing, por exemplo, para prever diferentes cenários e possíveis resultados.

A partir dos dados captados, o gestor terá mais informação à sua disposição para determinar os caminhos que a empresa deve seguir de acordo com o resultado esperado da estratégia. A previsão do tempo foi um dos primeiros aspectos em que a inteligência artificial auxiliou a humanidade, por meio do supercomputador Watson, da IBM.

6. Vendas e marketing

Uma das principais vantagens em se utilizar inteligência artificial nas empresas é proporcionar um atendimento de melhor qualidade ao cliente. A personalização do atendimento ao consumidor disponibiliza praticidade e conforto.

O machine learning é uma aplicação em que o sistema aprende a agir por sua conta sem ter que ser programado para a nova função. Com base em seus próprios dados coletados, o programa vai se adaptando.

7. Ensino

No Brasil e no mundo, a educação vem se transformando cada vez mais. A forma como os conteúdos são passados pelo professor nem sempre geram os resultados esperados. Crescentemente, o ensino tem demandado uma maior interação entre alunos e professores dentro de sala de aula como forma de potencializá-lo.

Uma proposta bem interessante é utilizar a tecnologia da computação como professor. Nesse caso, ela atua como um professor que está disponível para os alunos 24 horas por dia. Ele pode ser consultado em qualquer horário e oferece um ensino personalizado e de qualidade.

Implementar a inteligência artificial nas empresas pode potencializar os resultados, deixar os processos mais ágeis e ajudar a reduzir gastos operacionais. Além das vantagens, a experiência do usuário é aprimorada, de maneira que os dados são muito mais acessíveis e corretos. Os relatórios gerados são mais próximos da realidade, ajudando a criar insights que melhorem o processo final.

Preparar uma empresa para utilizar inteligência artificial exige planejamento. Por isso, conte com nossa parceria para vislumbrar e implementar processos relacionados à inteligência artificial e transformação digital.

Gostou de saber mais sobre as aplicações de inteligência artificial nas empresas? Compartilhe este conteúdo em suas redes sociais para que ele ajude mais pessoas!


Como a IA está transformando a indústria da saúde

Embora seja uma tecnologia recente, você sabia que já há muitas aplicações da inteligencia artificial na saude? É isso que apresentaremos neste artigo, isto é, algumas soluções de IA e os seus impactos em telemedicina, gestão e otimização de fluxos operacionais, atendimento, entre outros campos direta ou indiretamente ligados à saúde.

Antes, porém, é interessante mencionar que a adoção de novas tecnologias pode proporcionar vantagens competitivas às organizações da área, como hospitais, clínicas, consultórios, etc. Por outro lado, há riscos de não aderir a novas tecnologias nos negócios, incluindo os da saúde. Por exemplo, a perda de competitividade e de oportunidades.

No entanto, isso precisa de análise e planejamento, a fim de evitar resultados inesperados. Também é importante começar a entender mais sobre o uso da inteligencia artificial na saude. Sendo assim, continue lendo e confira como a IA está transformando essa área!

Tecnologia para a área da saúde (health tech)

O desenvolvimento de tecnologia com uso de inteligencia artificial na saude já vem ocorrendo. A seguir, listamos algumas das áreas que recebem contribuição da IA. Veja:

Telemedicina

A inteligencia artificial na medicina se destaca por otimizar o atendimento remoto, isto é, a telemedicina. Com o emprego de IA, dá para melhorar o tratamento dos dados obtidos de pacientes que moram em locais isolados e afastados para a produção de diagnósticos mais precisos.

A IA oferece suporte às decisões com Inteligência de Dados porque é capaz de avaliar grandes volumes de informações de saúde. A partir disso, ela pode detectar padrões e identificar tendências, bem como prever resultados prováveis e identificar oportunidades para melhorar a qualidade do atendimento.

Health Analytics e dados

Há sistemas que otimizam o tratamento de grandes volumes de dados (Big Data), o que possibilita aprimorar tratamentos, prevenir surtos de enfermidades, diminuir custos de saúde, etc. Essas soluções extraem dados estruturados de volumes não estruturados.

Nesse caso, a IA contribui na análise desses dados não estruturados, podendo ser incorporada em modelos de Health Analytics em conjunto com aprendizado de máquina. Aliás, é possível treinar algoritmos de aprendizado de máquina para detectarem padrões em imagens médicas, como ressonâncias magnéticas, raios-X e outros exames ou testes. Isso para que consigam identificar doenças.

Registros médicos e outros dados hospitalares nem sempre são guardados como dados estruturados, dificultando combinações e avaliações em conjunto. Embora sistemas de Big Data possam trabalhar neles, a IA é capaz de padronizar esses dados médicos independentemente do formato em que estejam. A partir disso, diversas informações podem ser obtidas e muitas tarefas otimizadas.

Desenvolvimento de medicamentos

A Inteligência Artificial pode ser empregada na identificação de novos usos e funções para medicamentos conhecidos. Além disso, é capaz de contribuir no planejamento de tratamentos personalizados e efetivos, bem como na seleção de pacientes com maiores probabilidades de se adaptarem a procedimentos específicos. Ou seja, aqueles com maiores chances de apresentarem respostas positivas a esses tratamentos.

Robótica médica

A inteligência artificial contribui no aprimoramento da cirurgia robótica. Além do mais, robôs com IA integrada podem colaborar para a reabilitação de pacientes. Isso sem falar na análise de dados constante durante essas atividades, o que pode resultar em insights para sessões, tratamentos, cirurgias ou outras ações futuras com os pacientes.

Aplicações da inteligencia artificial na saude

Há diferentes atividades que podem ter impacto da inteligencia artificial na area da saude. Adiante, separamos algumas delas, bem como funções ou procedimentos específicos em que a IA é capaz de atuar. Confira:

Gestão eficiente de agenda

A IA contribui não só na organização de horários da agenda, como também pode ser empregada em chats para marcar consultas e responder dúvidas de pacientes. Também é possível desenvolver modelos para prever a probabilidade de certos pacientes faltarem a consultas ou a outros procedimentos. Dessa forma, dá para o time de profissionais adotar medidas proativas para assegurar a vinda dos pacientes nos dias e horas programados.

Atualização de leitos em tempo real

A IA é capaz de monitorar a ocupação de leitos do hospital em tempo real. Isso contribui na gestão da capacidade do estabelecimento médico, assegura que pacientes recebam atendimento adequado e fornece informações mais precisas aos médicos e gestores. Em momentos de baixa ou alta demanda, esse tipo de monitoramento entrega importantes dados para a tomada de decisões.

Monitoramento de pacientes com doenças crônicas

A IA pode ser aplicada no monitoramento de doentes crônicos para detectar alterações em suas condições clínicas e, a depender da situação, acionar intervenções médicas. Em alguns casos, uma ação prévia e rápida tende a evitar a hospitalização de pacientes.

Análise genômica

A análise de sequências genômicas também é uma das funções possíveis da IA, de modo a permitir a detecção de mutações ou alterações genéticas associadas a certas enfermidades. Inclusive, isso pode auxiliar na personalização de certos tratamentos com base na genética do paciente.

Análise da jornada do paciente

A jornada do paciente pode passar por uma análise completa da IA, indo desde o momento em que ele começa as consultas até a sua alta. Os dados obtidos nas interações com médicos, nos exames, em conversas com o atendimento e em outros procedimentos podem ser avaliados pela IA.

Ela poderá ajudar na identificação de tendências ou padrões relacionados ao paciente e também envolvendo os processos da organização. Em outras palavras, se houve atrasos, ineficiências, gargalos etc. que podem ter impactado a jornada do paciente.

Pesquisa médica

A Inteligência Artificial também é uma ferramenta na mão de pesquisadores da área de saúde, uma vez que pode auxiliar na identificação de novos usos para medicamentos, na avaliação de resultados em ensaios clínicos, na organização de dados, etc.

Benefícios da IA para a indústria médica

É importante adotar novas tecnologias no setor da saúde para se destacar da concorrência. Nesse sentido, a IA pode alavancar negócios em diferentes áreas por conta de uma série de benefícios, como:

Melhora da jornada clínica do paciente

A IA torna mais eficiente a jornada clínica do paciente. Ela contribui para estimativas de necessidades de cuidados futuros, na identificação de oportunidades para otimizar o atendimento e na coordenação dos fluxos de saúde.

Prevenção de fraudes

Hospitais, clínicas, consultórios e outros estabelecimentos médicos estão sujeitos a fraudes e irregularidades. Todavia, a IA pode ser empregada para identificar e prevenir ações fraudulentas, executar auditorias inteligentes, detectar erros em contas médicas, otimizar a gestão de glosas, entre outras atividades. Os benefícios disso envolvem uma maior economia e uma redução nos riscos de fraudes.

Otimização de fluxos operacionais

Muitos processos de saúde podem ser otimizados com a IA. Por exemplo, a programação de consultas, a alta hospitalar, a triagem de pacientes, entre outros. Inclusive, alguns procedimentos administrativos e de gestão. Além disso, ela pode identificar quais são os processos que precisam de melhorias nos ambientes hospitalares, clínicos e de saúde em geral.

Tendências de IA para os próximos anos

Algumas tendências envolvendo a inteligencia artificial na saude já são cogitadas ou previstas à medida que o nível de maturidade das IAs aumenta. Por exemplo, o desenvolvimento de algoritmos de machine learning mais robustos e eficientes para análises de grande volume de dados médicos.

Além disso, temos o uso de IAs em conjunto com "gêmeos digitais", isto é, representações virtuais que emulam entidades reais. No caso, modelos da fisiologia humana e de componentes médicos podem ser projetados em ambientes digitais para agilizar o desenvolvimento de tratamentos. Com a ajuda da IA, essas representações e os tratamentos pretendidos podem se tornar mais precisos e eficientes.

Muitas dos usos da inteligência artificial na saude, que foram citados neste artigo, também tendem a ser aprimorados com o tempo. Alguns podem ser otimizados com novas funções e usos.

Enfim, apresentamos apenas alguns exemplos de tecnologias, aplicações e benefícios da inteligencia artificial na saude, além de certas tendências. Esse é um campo que está em sua fase inicial, podendo ter muitos desdobramentos no futuro. Portanto, fique atento em relação às novidades do setor!

Por falar em novidades e aplicações, aproveite e confira as soluções tecnológicas, incluindo de Inteligência Artificial, da Scala!


O futuro da IA: o que esperar nos próximos 10 anos

A inteligência artificial chegou para ficar. E mais: para avançar! Nesse contexto, as empresas que resistirem à implementação desses recursos em seu dia a dia perderão competitividade e poderão ser passadas para trás.

Por isso, é importante abrir as portas agora mesmo e acompanhar as inovações que podemos esperar para o futuro da inteligência artificial. Mas, afinal, quais são essas novidades? E como elas poderão ser úteis para o mercado e para a rotina nas organizações?

Continue a leitura para tirar as suas dúvidas e entenda mais sobre as vantagens de implementar a IA em sua rotina corporativa o quanto antes! 

Cenário atual da IA: onde estamos?

Nos dias de hoje, a inteligência artificial já tem ganhado muito espaço. Assistentes virtuais (como Alexa e SIRI) estão cada vez mais sofisticados. Além disso, o processamento de linguagem e a geração de informações (com recursos como o ChatGPT e o Gemini) têm ganhado cada vez mais destaque.

Além disso, setores como o machine learning (aprendizado de máquina) e o big data são pilares fundamentais do atual cenário de IA. Esses algoritmos são utilizados para analisar grandes volumes de dados, identificar padrões e fazer previsões. 

Isso é particularmente útil em setores como finanças, onde a IA é usada para detectar fraudes e prever tendências de mercado, e em saúde, onde auxilia no diagnóstico precoce de doenças. E por falar nisso, o uso da IA na saúde é um dos campos mais promissores, com a expectativa de que milhões de vidas sejam salvas pela tecnologia nos próximos anos.

Mas isso não é tudo. Na indústria, a automação baseada em IA está transformando as linhas de produção e logística. Robôs inteligentes são capazes de realizar tarefas complexas com alta precisão e eficiência, reduzindo erros e aumentando a produtividade.  

No entanto, é importante ter duas coisas em mente: a primeira diz respeito à substituição da força de trabalho humano pelas máquinas. Assim como já aconteceu em outras épocas, é preciso que os profissionais se adaptem às mudanças para não se tornarem obsoletos no mercado. Isso também é válido para as empresas e organizações em geral.

O segundo ponto envolve as considerações éticas e sociais. Nesse contexto, é importante ter um cuidado extra com detalhes como a segurança de dados e de informações do usuário. Afinal, é preciso seguir recomendações como as previstas na LGPD (Lei Geral de Proteção de Dados).

O que esperar do futuro da inteligência artificial?

O presente já é promissor, mas o que esperar do futuro? Os próximos anos prometem transformações significativas em diversos setores, influenciando desde a forma como trabalhamos até como interagimos com a tecnologia no dia a dia. 

E o mais interessante é que as tendências e as inovações que estão surgindo estão moldando um cenário onde a IA não só otimiza processos, mas também abre novas possibilidades de colaboração entre humanos e máquinas. 

Ou seja: a IA não veio para nos substituir, mas sim para mudar o modo como trabalhamos… para a melhor! Vamos explorar as principais áreas que devem ser impactadas nos próximos anos? Confira a seguir! 

Hiperautomação 

A hiperautomação é uma evolução natural da automação, onde múltiplas tecnologias como IA, machine learning e automação de processos robóticos são combinadas para automatizar tarefas cada vez mais complexas. 

É esperado que esse conceito traga melhorias para setores como manufatura, logística e serviços financeiros, proporcionando maior eficiência e reduzindo custos operacionais. Ela permitirá que empresas automatizem processos de ponta a ponta, eliminando a necessidade de intervenção humana em muitas etapas.

Eficiência operacional 

Nos próximos anos, a IA continuará a ser uma ferramenta essencial para melhorar a eficiência operacional nas empresas. Tudo isso, é claro, graças à capacidade de analisar grandes volumes de dados em tempo real, identificar padrões e prever tendências.

Bons exemplos disso são a gestão de recursos até a manutenção preditiva de equipamentos, passando por uma melhor alocação de pessoal e a otimização da cadeia de suprimentos. Como resultado, é possível esperar uma boa redução nos custos gerais e uma melhora na produtividade dos times.

Machine learning avançado 

O aprendizado de máquinas avançado permitirá que sistemas de IA aprendam e se adaptem com ainda mais precisão. À medida que essas técnicas se tornam mais sofisticadas, os algoritmos serão capazes de interpretar dados complexos e tomar decisões com cada vez mais autonomia.

Sendo assim, isso não vai só melhorar as capacidades existentes da IA, mas também permitirá o desenvolvimento de aplicações completamente novas. Tudo sempre levando em consideração as necessidades de cada organização e as expectativas para os setores envolvidos.

Criação de novos empregos

Agora, é hora de falarmos sobre uma das implicações éticas do uso da inteligência artificial. Ao contrário do que acreditam ou seja, que a IA elimine empregos —, ela também criará novas oportunidades de trabalho para aqueles que estiverem dispostos a se atualizarem com frequência.

Além disso, é natural que novos setores e indústrias surjam à medida que a IA for mais e mais aplicada a áreas ainda inexploradas. Ou seja: novos empregos serão criados. Cabe às empresas capacitarem suas equipes e atualizarem seus processos internos para abrigar cada vez mais pessoas no time.  

Melhoria na experiência do usuário

E já que o assunto envolve a força de trabalho, por que não falarmos como o uso da IA vai impactar na experiência dos clientes com as empresas? A ideia é que a interação entre humanos e máquinas se tornará mais intuitiva e natural com avanços em interfaces de usuário, como realidade aumentada e realidade virtual. 

Tais tecnologias têm o potencial de melhorar a comunicação e colaboração entre humanos e sistemas de IA, melhorando significativamente a experiência do usuário (UX).  

Privacidade e segurança de dados

Por fim, com o aumento do uso da IA, a privacidade e segurança de dados serão áreas de preocupação crescente. Desenvolvimentos em novas regulamentações e tecnologias serão essenciais para proteger informações sensíveis e garantir que a IA seja utilizada de maneira ética e responsável. 

Além disso, a transparência nos algoritmos e a implementação de medidas robustas de segurança de dados serão cruciais para manter a confiança do público na IA. Por isso, é esperado que medidas importantes sejam tomadas nesse aspecto na próxima década.

Afinal, por que investir em IA agora mesmo para as empresas?

Investir em inteligência artificial agora oferece às empresas uma série de vantagens competitivas e oportunidades estratégicas que são essenciais no cenário atual. Aqui estão alguns motivos convincentes para considerar investir nessa tecnologia o quanto antes:

  • ela pode automatizar tarefas repetitivas e de baixo valor agregado, liberando os recursos humanos para se concentrarem em atividades mais relevantes;
  • também é útil para processar grandes volumes de informações rapidamente;
  • permite decisões mais informadas e precisas em tempo real;
  • possibilita a personalização em escala, permitindo às empresas oferecerem experiências mais relevantes e satisfatórias aos clientes;
  • aumenta a precisão e a consistência em processos operacionais;
  • minimiza erros humanos.

Em resumo, investir em IA agora é um passo crucial para que sua empresa domine o futuro da inteligência artificial, se mantenha competitiva no mercado e evite danos e perdas nas próximas décadas. A hora de começar é agora! 

Quer dar o pontapé inicial na implementação de tecnologias em sua empresa? Confira os recursos oferecidos pela Scala e não perca mais tempo!

 

 

APENAS PARA LIBERAÇÃO DA TAREFA (KW SEM ACENTUAÇÃO): 

futuro da inteligencia artificial

O papel de FinOps e AI na sustentação da infraestrutura híbrida

Você está em busca de estratégias para melhorar os processos em sua empresa e deixá-los cada vez mais tecnológicos? Precisa de abordagens que diminuam o trabalho da equipe, ao invés de aumentá-lo cada vez mais? 

Então, integrar FinOps e inteligência artificial (IA) pode ser o caminho! Isso tem revolucionado a forma como as empresas gerenciam seus recursos e custos na nuvem. 

Neste artigo, exploraremos como essas ferramentas funcionam juntas, suas estratégias de implementação e os benefícios de longo prazo para as organizações. Continue a leitura para saber mais! 

O que é FinOps? 

FinOps, ou Financial Operations, é um termo que se refere a um conjunto de práticas que combinam finanças, tecnologia e operações para gerenciar os custos atrelados à computação em nuvem dentro das empresas. Esse tipo de colaboração envolve várias equipes nas organizações, incluindo finanças, TI e operações.

O papel da AI na gestão de infraestrutura 

Agora, é hora de você entender o papel da inteligência artificial nesse contexto. Afinal, como ela se relaciona com a computação em nuvem? E com a infraestrutura nesse quesito?

De modo geral, é fundamental compreender que esse tipo de cuidado faz com que os custos e a eficiência dos processos sejam otimizados. Uma das razões para isso é o monitoramento constante de áreas como servidores e redes. Isso pode ser feito em tempo real, ajudando na prevenção de falhas e detecção de problemas diversos.

Além disso, a IA pode automatizar tarefas rotineiras e repetitivas, liberando os profissionais de TI para se concentrarem em atividades mais estratégicas. E, claro, ela também é útil para melhorar a segurança da infraestrutura.

Por fim, a inteligência artificial pode ser uma grande aliada na melhoria da experiência do usuário, também conhecida como CX. Isso porque ajuda no fornecimento de suporte automatizado, com chatbots e assistentes virtuais que podem resolver problemas comuns e fornecer assistência imediata.

Sinergia entre FinOps e AI 

A sinergia entre FinOps e inteligência artificial (IA) transforma a maneira como as organizações gerenciam seus custos e operações na nuvem. Vamos explorar como elas se complementam?

O primeiro ponto é a visibilidade e transparência dos custos. Enquanto a FinOps oferece metodologias e práticas para monitorar e analisar os custos da nuvem, a IA pode automatizar a coleta e análise de dados financeiros.

Além disso, ambas podem ajudar na identificação de oportunidades para a redução de custos e prevenção de problemas. Assim, os processos são automatizados, otimizados e a satisfação do cliente também é melhorada nesse contexto. 

Por fim, outra vantagem que não pode ser deixada de lado e que faz parte da sinergia entre IA e FinOps é a otimização da tomada de decisões. Com a análise de dados, é mais fácil identificar os pontos de melhoria das empresas e fazer com que as escolhas sejam mais personalizadas. 

Estratégias para implementar FinOps e AI na infraestrutura híbrida 

Quer obter todas essas vantagens em seu ambiente profissional? Então, é hora de implementar FinOps e IA em uma infraestrutura híbrida. Isso requer uma abordagem estratégica e bem planejada. Vamos explorar algumas estratégias eficazes para essa implementação?

O primeiro passo é a avaliação inicial e o planejamento. Comece com uma auditoria completa dos recursos de nuvem e locais, incluindo o uso atual, custos, e dependências. Depois, estabeleça objetivos claros para o FinOps e a IA, como redução de custos, otimização de recursos, e melhoria de desempenho.

Em seguida, é hora de centralizar os dados de uso e custos de todas as fontes (nuvem pública, privada e infraestrutura local) em um único repositório. E, claro, não deixe de investir em boas métricas e de acompanhá-las ao longo do tempo.

Boas maneiras de fazer isso é com o uso de recursos com Apptio e Turbonomic. O Turbonomic, por exemplo, automatiza o ciclo de gestão de infraestrutura, ajustando automaticamente os recursos com base na demanda. Isso é essencial para FinOps e IA, pois garante que os recursos sejam utilizados de maneira eficiente, reduzindo desperdícios e custos operacionais.

A Apptio, por sua vez, proporciona uma gestão financeira abrangente, agregando e normalizando dados de custos, consumo e desempenho de diferentes sistemas. Isso é essencial para FinOps, pois facilita o entendimento completo dos gastos de TI e se integra com as vantagens observadas no uso da IA.

Benefícios de longo prazo da integração de FinOps e AI 

Para fechar, é importante falarmos sobre as vantagens dessa integração a longo prazo, ainda que algumas já tenham sido mencionadas ao longo da nossa conversa. Pronto(a) para tirar as suas dúvidas?

Redução de custos

Como mencionado anteriormente, integrar FinOps e IA permite identificar e eliminar gastos desnecessários de forma contínua. A IA pode analisar padrões de uso e prever futuras necessidades, ajudando a evitar custos excessivos.

Melhoria da precisão nas previsões financeiras

Além de reduzir os gastos, a integração pode fazer com que a sua empresa ganhe mais! A IA pode analisar grandes volumes de dados históricos para melhorar a precisão das previsões financeiras. É a chance ideal para deixar a sua receita ainda mais favorável.

Otimização contínua

A combinação de FinOps e IA facilita a otimização contínua dos recursos de TI. Isso significa que os recursos são alocados de maneira mais eficiente, evitando desperdícios e melhorando o desempenho geral.

Aumento da agilidade dos processos

A automação de tarefas repetitivas e a capacidade de resposta rápida a mudanças nas necessidades de recursos aumentam a agilidade operacional. Isso permite que as empresas se adaptem rapidamente a novas demandas ou condições de mercado.

Capacitação da equipe

Outra vantagem da integração de FinOps e IA promove uma cultura de melhoria contínua e inovação, incentivando a equipe a desenvolver novas habilidades e se adaptar às mudanças tecnológicas. Dessa forma, é mais provável que os colaboradores se mantenham atentos às novidades e que esse processo se torne cada vez mais simplificado.

Melhoria na experiência do cliente

Conforme visto anteriormente, a infraestrutura otimizada e a capacidade de resposta rápida a demandas garantem uma melhor experiência para os clientes, com serviços mais confiáveis e de alta qualidade.

Como é possível perceber, mesclar FinOps e inteligência artificial é uma estratégia interessante para a melhora dos processos internos das empresas. A adoção dessas práticas posiciona as empresas para uma gestão de TI mais eficiente, inovadora e orientada para o futuro.

E então? Que tal começar agora mesmo? Confira as soluções da Scala para o seu negócio e otimize a gestão financeira e tecnológica da sua empresa de forma simples, segura e otimizada! 


Inteligência Artificial no setor de energia

A Inteligência Artificial tem beneficiado diversas indústrias! Por meio de tecnologias específicas aplicadas, as organizações minimizam riscos e perdas e aprimoram sua performance.

No setor de energia não é diferente. A Inteligência Artificial tem grande impacto apoiando as empresas a enfrentarem os desafios típicos do segmento – e o principal deles é minimizar a perda de energia.

Neste artigo, vamos detalhar como isso acontece, destacando 5 formas como a IA ajuda a evitar a perda de energia. Acompanhe!

1. Análises de consumo para identificação de padrões e desvios

A análise de consumo de energia pelos clientes tem acontecido há muitos anos. É uma análise individualizada e recorrente, e por isso permite identificar padrões. Ainda, considera as questões comportamentais amplas – como a tendência geral de crescimento do consumo, visto que os clientes adquirem com o tempo novos e melhores eletrodomésticos que demandam mais energia.

Ao monitorar os padrões de consumo, a empresa pode identificar uma mudança repentina de padrão – que pode apontar, por exemplo, para uma falha de medição ou uma fraude, o que requer uma ação por parte da empresa (como uma visita ao local).

A questão é que existem mudanças de consumo que só podem ser identificadas por meio de mecanismos de Inteligência Artificial; algumas podem ser muito pequenas para serem “vistas” por outros tipos de análise, e ainda assim, ser importantes. A IA é muito mais sensível para captar as flutuações e desvios efetivos em padrões de consumo.

2. Análises técnicas de medidores e ligações dos clientes

Aqui, a Inteligência Artificial aprofunda e detalha uma análise essencial – relacionada ao funcionamento dos equipamentos e das ligações elétricas.

Com o apoio da IA, esse tipo de análise oferece a visão técnica do estado das ligações dos clientes, e é potencializado por uma análise das características técnicas dos medidores. Ou seja, são levadas em consideração situações específicas, como o comportamento de equipamentos de determinadas marcas, sua tendência a descalibrar em certas condições ambientais, entre outras. Dessa forma, se refina a identificação e se previnem possíveis perdas por erros no faturamento e erros na medição. A análise técnica ajuda ainda a reduzir riscos de acidentes elétricos nos pontos de conexão dos clientes.

3. Análises de comportamento de pagamento dos clientes

Um fator muito significativo para detectar a intenção de fraude é o acompanhamento minucioso do comportamento de pagamento dos clientes.

Isso porque quando um cliente vai perdendo a capacidade de pagar, isso não necessariamente vai acontecer de uma hora para outra – pode ser um processo gradual, com diversos elementos contribuintes. Esse tipo de tendência pormenorizada pode ser identificada por uma ferramenta de Inteligência Artificial, o que ajuda na identificação da probabilidade de cometer uma fraude e na predição da inadimplência

4. Análises da qualidade de serviço

Mais uma vez, a Inteligência Artificial viabiliza uma leitura muito mais aprofundada e pormenorizada das situações da prestação de serviços – aqui, com foco no controle e gerenciamento dos próprios ativos da companhia.

É um ponto de vista que se concentra nas questões técnicas internas para identificação e prevenção de falhas: por exemplo, se o consumo de determinado usuário baixa de maneira inesperada, uma hipótese a ser considerada é a diminuição da qualidade do serviço ou uma possível fraude dentro da própria companhia.

5. Análises preditivas de consumo dos clientes

Uma situação que é totalmente transversal a quase todas as companhias é o nível de relacionamento que há entre cliente e empresa. E quando um cliente começa a se sentir mal atendido, a ter uma percepção negativa da empresa, ele pode ter uma maior tendência à inadimplência ou a cometer fraude.

Essas situações podem ser identificadas e monitoradas em profundidade com o apoio da Inteligência Artificial. Ainda, pode-se fazer análises do relacionamento, da possibilidade de contato com o cliente, de quais clientes estão aumentando o número de queixas, quais as queixas têm maior relevância, quais são mais recorrentes, quantos clientes apontam determinadas queixas e conectar essas informações de diferentes formas.

Com a IA, é possível não apenas analisar os diversos aspectos do relacionamento com o cliente de maneira independente, mas também de promover cruzamentos e análises conjuntas e contextualizadas, o que eleva enormemente seu nível de precisão e aplicabilidade.

 

Estes foram 5 exemplos de como as análises e os modelos preditivos viabilizados pela Inteligência Artificial podem fazer a diferença para evitar perda de energia e seus impactos negativos para as empresas do setor. Eles compõem um panorama analítico detalhado e de grande poder preditivo, que ajuda:

  • Na identificação de clientes com maior probabilidade de fraude
  • No controle de recursos internos da companhia
  • No monitoramento do desempenho de equipamentos e instalações
  • Entre outros aspectos.

E o mais importante: a Inteligência Artificial dá suporte às empresas para a tomada de melhores decisões, operacionais e estratégicas. Isso é mais performance, mais segurança no planejamento e implementação de ações e mais resultados, com a informação e os dados trabalhando a favor do negócio.

Em nosso Blog, você encontra mais artigos como esse, dedicados a diferentes indústrias e segmentos! E se quiser saber mais sobre como a tecnologia pode acelerar exponencialmente os resultados do seu negócio, fale com a Scala!


Inteligência Artificial no Marketing Digital: impactos e tendências para o futuro

inteligencia artificial marketing

 

Não é por acaso que a Inteligência Artificial no Marketing Digital ganhou muito destaque a partir de 2023. O uso dessas ferramentas para análise de dados e suporte à produção está revolucionando o setor.

Mas o que, dentro da tecnologia, é de fato transformador e aplicável na sua empresa? Como você pode usar IA para desenvolver um relacionamento ainda mais próximo e humano com o seu público?

Neste artigo, vamos apresentar o uso de lA no futuro das empresas em relação ao marketing: não como substituta das relações, mas uma ponte que aproxima ainda mais marcas e clientes. Continue lendo!

O cenário atual de Inteligência Artificial no marketing

As Inteligências Artificiais entraram nas conversas de quase todas as empresas desde 2022, quando o ChatGPT demonstrou ao nível global o potencial de modelos de linguagem, os chamados LLM.

Capazes de unir a profundidade de análise de dados com uma interface natural de conversação humana, tornaram-se grandes ferramentas para otimização produtiva em diversos setores.

E não é diferente no Marketing Digital. Um exemplo é este estudo da Accenture, que mostra que 80% dos CMOs planejam aumentar os investimentos na tecnologia a partir de 2024.

Porém, essa busca emergente por utilizar a ferramenta acaba sendo confundida com pressa por muitos profissionais C-Level, levando à implementação inadequada de IA e consequente comprometimento em processos e na imagem da marca.

Empresas que buscam a IA como uma solução definitiva para todo o marketing caem em uma armadilha de efeito oposto: afastam seu público com comunicação fria e pouco confiável.

A Inteligência Artificial no marketing é uma ferramenta poderosa quando dá suporte ao trabalho humano, não como substituta a ele. Por meio das tendências atuais aplicadas no mundo inteiro, você vai ver como isso acontece, aliando o melhor da tecnologia com o melhor do contato pessoal.

As principais tendências de IA no Marketing Digital

O cenário de IA no Marketing Digital ainda é cheio de oportunidades e desafios, enquanto empresas descobrem e entendem a melhor forma de aplicá-las para terem resultados reais de mercado.

Veja as principais aplicações hoje da Inteligência Artificial no marketing para começar você essa jornada transformadora.

AI Analytics

Um dos maiores trunfos da Inteligência Artificial hoje é aliar processamento de dados e contexto, isto é, analisar e apresentar informações importantes sobre um negócio a partir de inputs naturais do profissional que busca a resposta para uma questão.

Dentro do marketing, a AI Analytics é a base para a competitividade do futuro: entendimento de público em nível granular, projeção de cenários mais precisos e automação de processos produtivos.

Ou seja, todos os itens abaixo nesta lista partem do AI Analytics. Veja então como essa parceria humano-tecnologia funciona na prática.

Segmentação de público

A internet, principalmente as redes sociais, abriram o campo de oportunidades para todas as empresas de qualquer tamanho. Se você quer alcançar um público e ganhar visibilidade, ele está lá esperando por você.

Porém, o grande desafio do Marketing Digital é exatamente a segmentação, fazer com que sua comunicação chegue em quem importa: as pessoas mais propensas a se tornarem leads e, futuramente, clientes.

Inteligências Artificiais especializadas são capazes de analisar inúmeros dados internos e externos para traçar o perfil perfeito de marketing.

Como resultado, você tem uma buyer persona, um perfil fictício que representa o seu consumidor ideal. Traçar estratégias pensando nesse personagem ajuda a focar seus esforços e gastar menos para converter novos leads.

Estruturação de estratégias de conteúdo

A relação entre Inteligência Artificial e conteúdo ainda é nebulosa na internet, principalmente com empresas utilizando a ferramenta como produtora de material final. A consequência é uma inundação de conteúdos despersonalizados e pouco confiáveis.

A melhor maneira de implementar IA hoje é como ferramenta de estruturação. A AI Analytics é capaz de monitorar o comportamento de seu cliente padrão e entender como deve ser feito o calendário e a distribuição do conteúdo para maximizar a visibilidade e o engajamento.

Análise de engajamento em tempo real

Falando em engajar, a relação entre clientes e marcas nas redes sociais é muito dinâmica. Novos assuntos, novas trends e até novos memes mudam como as pessoas se comunicam de um dia para o outro.

Acompanhar essas mudanças é acompanhar o seu público e garantir engajamento constante. A Inteligência Artificial pode trabalhar como uma facilitadora do monitoramento – não só processando esses dados em tempo real, mas aprendendo seu contexto e a resposta mais adequada.

Uso de chatbots

Muita gente já se esquece disso por serem tão capazes, mas as Inteligências Artificiais de hoje, como o ChatGPT, são, na verdade, chatbots. Então por que não aproveitar esse poder para o que ele foi originalmente concebido?

Chatbots são robôs que interagem com o público e sustenta conversas naturais para redirecionar ou até resolver pendências levantadas pelo usuário. Realizam desde a triagem de um primeiro atendimento até tarefas de sistema, como resolução de dúvidas, compartilhamento de arquivos e marcação de horários.

Dentro do marketing, os chatbots são ferramentas perfeitas para manter o relacionamento próximo ao lead, puxando conversa, apresentando ofertas ou fazendo o follow-up depois de uma compra.

Automação de processos

Quando analisamos tudo o que mostramos até aqui de tendência, vemos um padrão: um dos grandes poderes da Inteligência Artificial no marketing é a automação de processos.

Isso começa desde a análise de dados, passa pelo planejamento de estratégias e vai até a distribuição e acompanhamento de conteúdos online.

Portanto, usar IA hoje é investir em eficiência produtiva. Algo que vale muito na competitividade moderna.

A integração de ferramentas de IA e marketing visando o futuro

Independente de qual das tendências encaixe melhor na sua realidade, a verdade é que a relação entre IA e marketing deve apenas crescer no futuro. Isso fica claro tanto no interesse de CMOs quanto nos benefícios que quem investe na tecnologia vêm capitalizando desde o fim de 2022.

Embora ainda estejamos longe da forma final da Inteligência Artificial no marketing, este começo já é bastante promissor. Começar agora é aproveitar as oportunidades mais emergentes e sair na frente dos concorrentes. É se aproximar ainda mais do seu público, com a eficiência da tecnologia sem perder o contato humano.

Quer saber mais ainda sobre Inteligência Artificial e seu impacto nas empresas? Confira outros conteúdos em nosso blog!


o-boom-da-ia-generativa

O boom da IA generativa e seus desafios

A IA generativa está tão presente nas discussões empresariais dos últimos anos que é difícil não ter contato com alguma delas. Um estudo recente aponta que 87% dos líderes C-Level preveem o uso da ferramenta em um futuro recente.

Mas o boom da generative AI foi tão rápido e intenso que muitas perguntas ainda ficam na cabeça de diretores e empreendedores. O que é exatamente essa tecnologia? Como utilizá-la para ganhos reais na empresa?

Neste artigo, queremos responder a essas perguntas. Veja o que é IA generativa, seus principais desafios e como implementar no seu negócio. Boa leitura.

O que é IA generativa

A IA generativa é um modelo de Inteligência Artificial treinado para entender contextualmente as solicitações de um usuário, cruzar e processar dados de maneira relevante para o objetivo pedido e apresentar uma resposta adequada ao pedido para satisfazer a demanda.

Como o nome sugere, é uma IA capaz de gerar informação relevante a partir das necessidades de um usuário humano.

O grande destaque da generative AI é sua capacidade de processamento de informação aliado a um modelo de linguagem (LLM). Este não só é capaz de conectar ideias com velocidade e eficiência em milésimos de segundo, como apresentar suas conclusões de maneira natural e aplicável.

O que ela não é

Uma forma interessante de entender mais o que é uma Inteligência Artificial tipo ChatGPT é definindo o que ela não é, eliminando a desinformação que muitas vezes vemos ser propagada na internet.

A IA generativa foi denominada assim por gerar resultados a partir de seu treinamento para dados preestabelecidos. Ou seja, ela ainda não está na ideia de ficção científica, capaz de pensar por conta própria ou criar algo do zero.

Entender isso é importante para saber como utilizar e superar os desafios da IA. Ela é uma ferramenta que não substitui pessoas com capacidades criativas e de tomada de decisão. Pelo contrário, ela as empodera com visibilidade de dados para navegar com mais eficiência no mercado.

Os desafios de utilizar Inteligência Artificial em contexto empresarial

Dentro de tantas possibilidades, discussões e desinformação, a IA generativa nasceu em um cenário de oportunidades e desafios.

Quem entende as questões mais relevantes sobre a tecnologia tem uma vantagem sobre os concorrentes, entendendo exatamente como implementá-la, evitando algumas armadilhas e transformando-a em resultados reais de negócio.

Após entender o que é Inteligência Artificial generativa, veja os principais desafios atuais da ferramenta.

Volume e complexidade da informação

Para ter uma IA generativa em sinergia com o seu negócio, é preciso que dados internos e de mercado sejam integrados em uma rede confiável de informação que sirva de fonte para atuação do modelo.

Por isso, o uso de soluções externas, como ChatGPT e Gemini, nem sempre trazem as respostas mais adequadas à sua situação. Principalmente por não ter como saber quais dados estão sendo utilizados e de onde vêm.

É por isso que plataformas como a ALICE são recomendadas no uso empresarial. Elas são implementadas internamente na empresa, utilizando seu próprio pool de dados para relatórios e previsões mais precisos, prontos para o uso real.

Segurança e privacidade

A segurança da informação também é um ponto de atenção, principalmente depois da entrada em vigor da LGPD. Utilizar dados internos em ferramentas externas abre uma brecha que pode ser aproveitada por terceiros. A escolha da IA mais segura é fundamental para o sucesso.

Direitos autorais

Uma das discussões mais recorrentes sobre IA generativa tem a ver com direitos autorais. E com razão: alguns modelos menos confiáveis surgiram utilizando dados originais de terceiros sem anuência ou pagamento, gerando resultados que podem ser considerados até crime.

Com o tempo, é provável que esses agentes de má-fé saiam do mercado naturalmente. Mas, até lá, é importante utilizar apenas ferramentas confiáveis.

Questões éticas

Tudo o que levantamos até aqui se torna o pacote de questões éticas amplamente discutidas sobre o assunto. A mais prevalente hoje é a substituição do trabalho humano por IA generativa.

A nossa posição sobre isso é clara: a Inteligência Artificial é transformadora no empoderamento de profissionais e empresas, não como substituta delas.

O uso de soluções de IA de qualidade leva a mais visibilidade de mercado presente e futuro, além de liberdade para que tomadores de decisão tenham múltiplos cenários disponíveis para escolher o melhor caminho para a empresa.

6 dicas para escolher a opção mais segura em meio aos desafios da IA generativa

Agora que falamos sobre os desafios da IA generativa, como escolher a melhor opção que supere todos esses pontos? Vamos terminar com 6 dicas para implementar a ferramenta ideal!

1. Entenda a sua demanda

A melhor IA para seu negócio é aquela que se encaixa nas suas necessidades. Você quer ter melhores previsões financeiras? Fazer análises de mercado? Aprofundar indicadores de performance? Ou tudo ao mesmo tempo?

As respostas a essas perguntas vai guiar a sua decisão sobre a solução ideal.

2. Trace os seus objetivos

Objetivos claros são primordiais em qualquer negócio: crescimento, otimização, consolidação, visibilidade, etc.

Se você sabe onde quer chegar, fica mais fácil não só decidir a ferramenta ideal, como as perguntas a serem feitas para respostas que levem o negócio para onde você quer.

3. Busque customização

Muitas das ferramentas como ChatGPT oferecem versões pagas que oferecem mais funcionalidades e capacidades de customização.

Porém, o ideal é uma IA generativa que se integre de fato no seu sistema, com segurança e eficiência. Assim, você pode treinar e lapidar o modelo para entender exatamente o que você precisa.

4. Priorize os seus dados

Por mais que muitas IAs tenham acesso a informações confiáveis e amplas sobre o mercado, elas nunca chegarão ao nível de utilizar seus próprios dados a seu favor.

Portanto, escolha a ferramenta que você pode controlar e alimentar de maneira segura com seus indicadores internos, tendo respostas ainda mais ajustadas à sua realidade.

5. Integre em seus processos

Muitas empresas correm para implementar seu sistema de Inteligência Artificial de qualquer jeito e, em vez de acelerar análise de dados, acabam criando gargalos dúvida em setores diversos.

A Inteligência Artificial útil é aquela que se integra naturalmente nos processos produtivos, com fácil acesso de colaboradores, fácil verificação e compartilhamento de resultados.

6. Busque aprimoramento constante

As IAs estão em constante evolução. Para não ficar para trás, você precisa acompanhar esse movimento e aplicar melhorias constantes na sua relação com a ferramenta.

Existem duas maneiras de fazer isso: por conta própria, sempre monitorando, pesquisando e implementando novas funcionalidades, ou com ajuda especializada, que implemente e monitore um sistema customizado de IA na sua empresa.

Agora que você sabe o que é IA generativa, seus desafios e como implementar, é hora de começar essa jornada. Mapeie suas necessidades e oportunidades, pesquise a melhor ferramenta no mercado e coloque seu negócio no futuro!

Quer ajuda para iniciar esse processo, com expertise e tecnologias de ponta? Conheça as soluções Scala, referência em transformação digital e IA generativa para negócios!


inteligência artificial

O que é e o que não é inteligência artificial? Entenda

É praticamente senso-comum que a inteligência artificial (IA) está mudando o modo como executamos tarefas, nos relacionamos e até interagimos com a tecnologia em geral. Desde assistentes virtuais na nuvem que respondem às nossas perguntas a sistemas que identificam pontos de melhoria em softwares, a realidade é que não temos como viver sem esse recurso.

Entretanto, ainda que a popularidade das IAs esteja crescendo exponencialmente, nem todos sabem, de fato, o que é inteligência artificial e o que não é. Afinal, existem critérios que determinam se o sistema é ou não capaz de pensar por si só, ainda que de maneira limitada.

Pensando nisso, desenvolvemos este conteúdo em parceria com Filipe Cotait, COO da Scala, para explicar o que é inteligência artificial e como diferenciá-la dos outros modelos existentes. Continue a leitura para saber tudo sobre o tema.

O que é inteligência artificial?

Inteligência artificial é um ramo das ciências da computação que tem como objetivo criar sistemas que necessitariam de inteligência humana para serem executadas. Elas são capazes de adquirir e armazenar conhecimento de forma estruturada, utilizando dados para tomar decisões e realizar ações. Segundo Filipe Cotait, “Inteligência artificial tem vários conceitos, mas um conceito bem aceito pela comunidade é a capacidade da máquina de executar tarefas feitas pelos humanos em geral.”

Portanto, toda a parametrização complexa encontrada em um sistema de inteligência artificial permite chegar a conclusões lógicas, planejar ações, fornecer respostas em uma linguagem natural, interpretar o mundo ao redor e, até mesmo, mover objetos físicos quando existe estrutura para isso. Os robôs utilizados pela Boston Dynamics, por exemplo, detêm essa capacidade.

Exemplos de inteligência artificial

Separamos exemplos comuns da rotina humana para ilustrar nossa explicação sobre o que é inteligência artificial. Confira abaixo.

Carros autônomos

Os carros de empresas como Tesla, Waymo, alguns modelos BWM, Nvidia, Ford e outros veículos têm inteligência artificial. Isso porque eles precisam analisar constantemente o cenário ao redor, aprendendo conforme o ambiente que estão e tomando decisões informadas sobre como proceder naquele contexto.

Chats virtuais

Os Large Language Models (grandes modelos de linguagem), como o Chat GPT, o Google Gemini (Google Bard) e o Copilot também fazem parte de sistemas populares de inteligência artificial generativa — resumidamente, que conseguem criar conteúdos inéditos. Contando com uma base de dados gigantesca, eles têm um conjunto de informações grande o suficiente para decidir e desenvolver respostas satisfatórias. “A capacidade da máquina criar novos conteúdos baseado em conhecimentos”, é um fator-chave nessa diferenciação.

Redes sociais

As redes sociais são fontes de dados inesgotáveis que precisam ser trabalhados diariamente por algoritmos que analisam o comportamento de seus usuários. Para isso, eles utilizam códigos complexos que preveem como uma pessoa se sentiu após interagir com determinada publicação, inferindo quais ações ela tomará depois e sugerindo conteúdos que despertarão o engajamento daquele indivíduo.

Sistemas de saúde

A área de saúde está se beneficiando cada vez mais dos avanços das IAs. Isso porque já existem sistemas computadorizados capazes de tomar decisões precisas durante cirurgias, com habilidades de controle e foco que os humanos não conseguem manter o tempo todo. Além disso, existem softwares que ajudam na prevenção de doenças analisando o histórico do paciente e fazendo recomendações mais acertadas aos médicos.

O que não é inteligência artificial?

Sistemas de interação e automação simples, simulações, robôs com funções delimitadas e pequenos recursos de softwares não representam inteligência artificial. Isso porque eles não têm a capacidade de analisar e tomar decisões que fujam ao seu escopo delimitado durante o desenvolvimento.

Ainda que sejam importantíssimos para a vida moderna e carreguem tecnologias de ponta, sua limitação quanto ao aprendizado e análise de fatores externos aos seus algoritmos impedem que sejam classificados como tal. Contudo, como o conceito sobre o que é inteligência artificial e suas aplicações estão constantemente mudando, seu entendimento pode ser alterado a qualquer momento.

Tecnologias que não são inteligência artificial

A complexidade do tema leva ao erro, o que pode refletir em custos para empresas que querem incrementar suas soluções tecnológicas. Para evitar esse cenário, confira os exemplos de tecnologias que não são classificas como IAs.

Robôs automatizados

Embora seja incrível ver a precisão com que um braço mecatrônico instala componentes em uma placa de silício, isso não configura uma inteligência artificial. A razão é que todos os parâmetros com os quais esse tipo de dispositivo deve trabalhar estão delimitadas no seu algoritmo, incluindo tamanho da placa, pressão utilizada para segurar o item e velocidade de movimentação.

Softwares

Firewalls, bloqueios de spam e filtros em conteúdos também não são modelos de inteligência artificial por exigirem que seus recursos sejam programados à mão ou baseados em modelos existentes. É por isso que novos vírus demoram a ser incorporados em sistemas de proteção, por exemplo.

Simulações e realidade virtual

Outro recurso comumente comparado com as IAs são as simulações e os softwares de realidade virtual. Como são ambientes altamente limitados, que dependem de hardware robusto para criar um universo muito específico, eles também não configuram inteligências artificiais.

O que observar ao procurar soluções de inteligência artificial?

De acordo com Filipe, “não há opção de não utilizar IA nos negócios atualmente.” Entretanto, o primeiro passo ao procurar por soluções de inteligência artificial é saber o que você precisa e o que não precisa. Isso porque os sistemas de IA podem abranger inúmeras soluções, mas as especificidades devem fazer sentido para o seu negócio.

Complementando, Filipe destaca que as vantagens trazidas pelo uso de IA são enormes: "A adoção de ferramentas de IA pode trazer vantagens competitivas significativas, seja para melhorar a eficiência operacional, oferecer melhores produtos ou serviços, ou entender melhor o mercado e os clientes."

A partir daí, o próximo movimento é contar com uma empresa que consiga realmente trazer benefícios. Para tanto, a parceira de tecnologia deve ter um conhecimento profundo sobre o tema, deixando claro até onde sua operação pode ser beneficiada e quais os impactos diários.

Como a Scala pode ajudar?

As soluções da Scala vão além da inteligência artificial utilizada em recursos simples, como chatbots e sistemas de gestão. O objetivo é "proporcionar um conhecimento profundo sobre a aplicabilidade da IA nos negócios e ajudar as empresas a identificar problemas específicos que podem ser resolvidos com IA", reforça Filipe.

Com todo o suporte estratégico que a empresa oferece, você e seu time estarão muito mais integrados ao uso da ferramenta, resultando em mais colaboradores tendo insights e podendo focar nas necessidades do cliente final em vez de em tarefas repetitivas. Além disso, a ScalaIT oferece sistemas que podem ser customizados de acordo com o contexto.

A resinificação dos dados, por exemplo, é um diferencial que permite que as empresas extraiam mais informações a partir de um único dado. Isso é possível devido à abordagem de observar um único dado por vários ângulos e contextos a partir dos softwares exclusivos e da inteligência artificial desenvolvida pela Scala.

Sendo assim, agora que você sabe o que é inteligência artificial, como identificá-la e o que deve ser observado ao procurar por esse tipo de solução, está na hora de dar este passo rumo à inovação e otimizar sua operação. É fundamental contar com uma empresa que tem tradição, autoridade e diferenciais que farão toda a diferença para alavancar seus negócios.

Dito isso, a Scala é, sem dúvidas, uma alternativa confiável para negócios que não sabem bem por onde começar, mas que sentem a necessidade de implementar sistemas de IA na sua rotina. Não deixe que as oportunidades passem por não ter recursos para identificá-las.

Entre em contato com um de nossos especialistas e comece agora mesmo a planejar o futuro da sua empresa com a inteligência artificial. Nossos sistemas certamente contribuirão para a melhoria da sua produtividade, além de fornecerem informações para uma tomada de decisão mais acertada.